Course Code ESE 821	Credit Hours (Th-Pr) 3.0	Energy Resources and Technologies	Contact Hrs/Week (Th-Pr) 3.0	Total Contact Hrs (Th-Pr) 45
---------------------------	-----------------------------------	--------------------------------------	---------------------------------------	---------------------------------------

Course Outline:

Reserves, production and consumption of oil, coal and gas, technologies for conversion; fundamental principles, applications and status of solar energy, biomass energy, wind energy, hydro-power, geothermal energy, wave energy, tidal energy, and ocean thermal energy; outlook of fossil and renewable energy

<u>Eligibility Criteria</u>: B.E (Chemical, Mechanical, Electrical, Environmental and Materials)

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	Renewable Energy: Power	Godfrey Boyle	GB	Text
	for a Sustainable Future			
2.	Fundamentals of	Aldo V. Da Rosa	RD	Reference
	Renewable Energy			
	Processes			
3.	Sustainable Energy,	J.W. Tester, E.M. Drake	DT	Reference
4	Renewable Energy and	Robert Foster, Majid	MR	Reference
	the Environment	Ghassemi		

Course Objectives:

Considering that energy is a critical need of the society, it is important that energy graduates should have an understanding of: i) the reserve position of fossil energy resources in quantitative terms as well as in terms of its lifetime, ii) the importance of renewable energy and its availability, iii) the working principles of different renewable energy technologies, and (iv) applications of energy technologies in the economic sectors.

Learning outcome:

The student will be abreast of the various energy options and resource types available for exploitation with special emphasis on renewable energy resources and their use in the light of environmental implications such as green house effect and its mitigation methodologies. The students will be able to evaluate the potential of the project incentives offered by CDM.

Topics Covered:

No.	Topics	Text	Contact
		Book	Hours
1.	Energy and its Types, Thermal Energy, Chemical Energy,	GB	8
	Electromagnetic Energy, Nuclear, Energy, Mechanical	and	
	Energy	RD	
2.	Law of Energy conversion, Energy conservation and Energy	GB	8
	Efficiency, Conventional and Renewable Energy Resources,	and	
	Energy Mix of the world, Energy Mix of Pakistan and south	RD	
	Asia, Fossil Energy Resources and Technologies		
3.	Renewable Energy Resources	GB	14
	Definition and types of Renewable Energies	and	
	Resource availability, technologies and applications (from	RD	
	international and local prospective		
	Solar Energy (thermal and photovoltaics)		
	Wind Energy (resources, turbines and applications)		
	Hydropower (resources, turbines, small hydro power		
	systems and applications)		
	Biomass Energy (resources, thermal and non thermal		
	applications of biomass, and biofuels)		
	Geothermal Energy (resources, heat and electricity		
	applications)		
	Other Renewable Energy Resources (Tidal, Wave and		

	Ocean Thermal Energy Conversion)		
4.	Greenhouse Gases and Climate Change	GB	15
	Energy Use and the Greenhouse Effect	and	
	Greenhouse Gases: Types, Inventory and Sources	RD	
	Climate Change Impacts		
	Technology Options for GHG Emission Mitigation		
	Renewable Energy		
	Energy Efficient Technologies by Sector AND End-		
	Use		
	Cleaner Production		
	International Climate Change Conventions, Protocols		
	and Perspectives		
	Developing vs. Developed Country Perspectives on GHG		
	Mitigation		
	United Nations Framework Convention on Climate Change		
	(UNFCCC) and Conference of the Parties		
	The Kyoto Protocol and Flexible Mechanisms: Clean		
	Development Mechanism (CDM), Emission Trading.		
	Joint Implementation		